scRNA-seq#
You’ll learn how to manage a growing number of scRNA-seq data batches as a single queryable dataset.
Along the way, you’ll see how to create reports, leverage data lineage, and query statistics of individual data batches stored as files.
Specifically, you will:
read a single
.h5ad
file as anAnnData
and seed a growing dataset with it (, currently page)append a new data batch (a new
.h5ad
file) and create a new version of this dataset ()load the dataset into memory and save analytical results as plots ()
iterate over the dataset, train a model, store a derived representation ()
discuss converting a number of files to a single TileDB SOMA store of the same data ()
Setup#
!lamin init --storage ./test-scrna --schema bionty
Show code cell output
✅ saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-10 15:41:26)
✅ saved: Storage(id='YpFBBtr4', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-10-10 15:41:26, created_by_id='DzTjkKse')
💡 loaded instance: testuser1/test-scrna
💡 did not register local instance on hub (if you want, call `lamin register`)
import lamindb as ln
import lnschema_bionty as lb
import pandas as pd
ln.track()
💡 loaded instance: testuser1/test-scrna (lamindb 0.55.2)
💡 notebook imports: lamindb==0.55.2 lnschema_bionty==0.31.2 pandas==1.5.3
💡 Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type=notebook, updated_at=2023-10-10 15:41:34, created_by_id='DzTjkKse')
💡 Run(id='RNgU2xx7TeUrL3d83b4F', run_at=2023-10-10 15:41:34, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
Access #
Let us look at the data of Conde et al., Science (2022).
These data are available in standardized form from the CellxGene data portal.
Here, we’ll use it to seed a growing in-house store of scRNA-seq data managed with the corresponding metadata in LaminDB registries.
Note
If you’re not interested in managing large collections of in-house data and you’d just like to query public data, please take a look at CellxGene census, which exposes all datasets hosted in the data portal as a concatenated TileDB SOMA store.
lb.settings.species = "human"
By calling ln.dev.datasets.anndata_human_immune_cells
below, we download the dataset from the CellxGene portal here and pre-populate some LaminDB registries.
adata = ln.dev.datasets.anndata_human_immune_cells(
populate_registries=True # this pre-populates registries
)
adata
AnnData object with n_obs × n_vars = 1648 × 36503
obs: 'donor', 'tissue', 'cell_type', 'assay'
var: 'feature_is_filtered', 'feature_reference', 'feature_biotype'
uns: 'cell_type_ontology_term_id_colors', 'default_embedding', 'schema_version', 'title'
obsm: 'X_umap'
This AnnData
is already standardized using the same public ontologies underlying lnschema-bionty, hence, we expect validation to be simple.
Nonetheless, LaminDB focuses on building clean in-house registries
Note
In the next notebook, we’ll look at the more difficult case of a non-standardized dataset that requires curation.
Validate #
Validate genes in .var
#
lb.Gene.validate(adata.var.index, lb.Gene.ensembl_gene_id);
❗ 148 terms (0.40%) are not validated for ensembl_gene_id: ENSG00000269933, ENSG00000261737, ENSG00000259834, ENSG00000256374, ENSG00000263464, ENSG00000203812, ENSG00000272196, ENSG00000272880, ENSG00000270188, ENSG00000287116, ENSG00000237133, ENSG00000224739, ENSG00000227902, ENSG00000239467, ENSG00000272551, ENSG00000280374, ENSG00000236886, ENSG00000229352, ENSG00000286601, ENSG00000227021, ...
148 gene identifiers can’t be validated (not currently in the Gene
registry). Let’s inspect them to see what to do:
inspector = lb.Gene.inspect(adata.var.index, lb.Gene.ensembl_gene_id)
❗ 148 terms (0.40%) are not validated for ensembl_gene_id: ENSG00000269933, ENSG00000261737, ENSG00000259834, ENSG00000256374, ENSG00000263464, ENSG00000203812, ENSG00000272196, ENSG00000272880, ENSG00000270188, ENSG00000287116, ENSG00000237133, ENSG00000224739, ENSG00000227902, ENSG00000239467, ENSG00000272551, ENSG00000280374, ENSG00000236886, ENSG00000229352, ENSG00000286601, ENSG00000227021, ...
detected 35 Gene terms in Bionty for ensembl_gene_id: 'ENSG00000275249', 'ENSG00000275063', 'ENSG00000198899', 'ENSG00000198886', 'ENSG00000273554', 'ENSG00000198840', 'ENSG00000276017', 'ENSG00000273748', 'ENSG00000212907', 'ENSG00000278633', 'ENSG00000275869', 'ENSG00000277836', 'ENSG00000278817', 'ENSG00000268674', 'ENSG00000228253', 'ENSG00000277856', 'ENSG00000274175', 'ENSG00000198695', 'ENSG00000277630', 'ENSG00000276256', ...
→ add records from Bionty to your Gene registry via .from_values()
couldn't validate 113 terms: 'ENSG00000272567', 'ENSG00000270394', 'ENSG00000255823', 'ENSG00000280095', 'ENSG00000225932', 'ENSG00000182230', 'ENSG00000280374', 'ENSG00000254561', 'ENSG00000268955', 'ENSG00000272267', 'ENSG00000224745', 'ENSG00000256222', 'ENSG00000221995', 'ENSG00000261737', 'ENSG00000237133', 'ENSG00000254740', 'ENSG00000270672', 'ENSG00000237838', 'ENSG00000256892', 'ENSG00000227902', ...
→ if you are sure, create new records via ln.Gene() and save to your registry
Logging says 35 of the non-validated ids can be found in the Bionty reference. Let’s register them:
records = lb.Gene.from_values(inspector.non_validated, lb.Gene.ensembl_gene_id)
ln.save(records)
❗ did not create Gene records for 113 non-validated ensembl_gene_ids: 'ENSG00000112096', 'ENSG00000182230', 'ENSG00000203812', 'ENSG00000204092', 'ENSG00000215271', 'ENSG00000221995', 'ENSG00000224739', 'ENSG00000224745', 'ENSG00000225932', 'ENSG00000226377', 'ENSG00000226380', 'ENSG00000226403', 'ENSG00000227021', 'ENSG00000227220', 'ENSG00000227902', 'ENSG00000228139', 'ENSG00000228906', 'ENSG00000229352', 'ENSG00000231575', 'ENSG00000232196', ...
The remaining 113 are legacy IDs, not present in the current Ensembl assembly (e.g. ENSG00000112096).
We’d still like to register them, but won’t dive into the details of converting them from an old Ensembl version to the current one.
validated = lb.Gene.validate(adata.var.index, lb.Gene.ensembl_gene_id)
records = [lb.Gene(ensembl_gene_id=id) for id in adata.var.index[~validated]]
ln.save(records)
❗ 113 terms (0.30%) are not validated for ensembl_gene_id: ENSG00000269933, ENSG00000261737, ENSG00000259834, ENSG00000256374, ENSG00000263464, ENSG00000203812, ENSG00000272196, ENSG00000272880, ENSG00000270188, ENSG00000287116, ENSG00000237133, ENSG00000224739, ENSG00000227902, ENSG00000239467, ENSG00000272551, ENSG00000280374, ENSG00000236886, ENSG00000229352, ENSG00000286601, ENSG00000227021, ...
Now all genes pass validation:
lb.Gene.validate(adata.var.index, lb.Gene.ensembl_gene_id);
Our in-house Gene registry provides rich metadata for each gene measured in the AnnData
:
lb.Gene.filter().df().head(10)
symbol | stable_id | ensembl_gene_id | ncbi_gene_ids | biotype | description | synonyms | species_id | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|
id | |||||||||||
8W6kKBmqo0wm | TAF11L2 | None | ENSG00000284373 | 391742 | protein_coding | TATA-box binding protein associated factor 11 ... | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse | |
PjNo1Yh905M8 | PGAP6 | None | ENSG00000129925 | 58986 | protein_coding | post-GPI attachment to proteins 6 [Source:HGNC... | TMEM6|TMEM8A|TMEM8|M83 | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse |
J0pAIXXk0IV2 | None | None | ENSG00000236838 | lncRNA | novel transcript, antisense to SMG6 | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse | ||
Vc0vNMkflIkG | PTBP2 | None | ENSG00000117569 | 58155 | protein_coding | polypyrimidine tract binding protein 2 [Source... | PTB|BRPTB|PTBLP|NPTB | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse |
PTQ7E0RWszBX | C5orf34-AS1 | None | ENSG00000248554 | lncRNA | C5orf34 antisense RNA 1 [Source:HGNC Symbol;Ac... | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse | ||
Hh0Gk3vjs5HC | B4GALNT4 | None | ENSG00000182272 | 338707 | protein_coding | beta-1,4-N-acetyl-galactosaminyltransferase 4 ... | FLJ25045|NGALNAC-T1 | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse |
ww29UrWYeh9C | LINC02958 | None | ENSG00000265752 | lncRNA | long intergenic non-protein coding RNA 2958 [S... | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse | ||
6bm0vySsNcMU | DMD | None | ENSG00000198947 | 1756 | protein_coding | dystrophin [Source:HGNC Symbol;Acc:HGNC:2928] | DXS239|DXS269|DXS142|DXS164|DXS270|DXS268|DXS2... | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse |
qSw8XnsDNynf | LINC00706 | None | ENSG00000281186 | 100652997 | lncRNA | long intergenic non-protein coding RNA 706 [So... | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse | |
0XDePDNFMzLw | EEF1AKMT1 | None | ENSG00000150456 | 221143 | protein_coding | EEF1A lysine methyltransferase 1 [Source:HGNC ... | N6AMT2 | uHJU | pVGg | 2023-10-10 15:41:49 | DzTjkKse |
There are about 36k genes in the registry, all for species “human”.
lb.Gene.filter().df().shape
(36503, 11)
Validate metadata in .obs
#
adata.obs.columns
Index(['donor', 'tissue', 'cell_type', 'assay'], dtype='object')
ln.Feature.validate(adata.obs.columns)
❗ 1 term (25.00%) is not validated for name: donor
array([False, True, True, True])
1 feature is not validated: "donor"
. Let’s register it:
feature = ln.Feature(name="donor", type="category", registries=[ln.ULabel])
ln.save(feature)
Tip
You can also use features = ln.Feature.from_df(df)
to bulk create features with types.
All metadata columns are now validated:
ln.Feature.validate(adata.obs.columns)
array([ True, True, True, True])
Next, let’s validate the corresponding labels of each feature.
Some of the metadata labels can be typed using dedicated registries like CellType
:
validated = lb.CellType.validate(adata.obs.cell_type)
❗ received 32 unique terms, 1616 empty/duplicated terms are ignored
❗ 2 terms (6.20%) are not validated for name: germinal center B cell, megakaryocyte
Register non-validated cell types - they can all be loaded from a public ontology through Bionty:
records = lb.CellType.from_values(adata.obs.cell_type[~validated], "name")
ln.save(records)
❗ now recursing through parents: this only happens once, but is much slower than bulk saving
lb.ExperimentalFactor.validate(adata.obs.assay)
lb.Tissue.validate(adata.obs.tissue);
Because we didn’t mount a custom schema that contains a Donor
registry, we use the ULabel
registry to track donor ids:
ln.ULabel.validate(adata.obs.donor);
❗ received 12 unique terms, 1636 empty/duplicated terms are ignored
❗ 12 terms (100.00%) are not validated for name: D496, 621B, A29, A36, A35, 637C, A52, A37, D503, 640C, A31, 582C
Donor labels are not validated, so let’s register them:
donors = [ln.ULabel(name=name) for name in adata.obs.donor.unique()]
ln.save(donors)
ln.ULabel.validate(adata.obs.donor);
Register #
modalities = ln.Modality.lookup()
experimental_factors = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
features = ln.Feature.lookup()
Register data#
When we create a File
object from an AnnData
, we’ll automatically link its feature sets and get information about unmapped categories:
file = ln.File.from_anndata(
adata, description="Conde22", field=lb.Gene.ensembl_gene_id, modality=modalities.rna
)
file.save()
The file has the following 2 linked feature sets:
file.features
Features:
var: FeatureSet(id='XGD5bALjzlxe3dYm2tcM', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-10 15:42:29, modality_id='nG6MZ3aj', created_by_id='DzTjkKse')
'TAF11L2', 'PGAP6', 'None', 'PTBP2', 'C5orf34-AS1', 'B4GALNT4', 'LINC02958', 'DMD', 'LINC00706', 'EEF1AKMT1', 'None', 'None', 'METRNL', 'MPND', 'NOBOX', 'LINC02706', 'TRIM50', 'IGKV6D-21', 'ZFHX4', 'AHCYL1', ...
obs: FeatureSet(id='KrYPEOnuTBTRi4WqoelO', n=4, registry='core.Feature', hash='Z0BvFRBSIr9xpTLjV1nb', updated_at=2023-10-10 15:42:35, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 donor (0, core.ULabel):
🔗 tissue (0, bionty.Tissue):
🔗 assay (0, bionty.ExperimentalFactor):
🔗 cell_type (0, bionty.CellType):
Register metadata links#
Let us first link external labels for the entire file:
file.labels.add(species.human, feature=features.species)
file.labels.add(experimental_factors.single_cell_rna_sequencing, feature=features.assay)
Next, we parse the columns of adata.obs
for additional metadata:
file.labels.add(adata.obs.cell_type, feature=features.cell_type)
file.labels.add(adata.obs.assay, feature=features.assay)
file.labels.add(adata.obs.tissue, feature=features.tissue)
file.labels.add(adata.obs.donor, feature=features.donor)
file.features
Features:
var: FeatureSet(id='XGD5bALjzlxe3dYm2tcM', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-10 15:42:29, modality_id='nG6MZ3aj', created_by_id='DzTjkKse')
'TAF11L2', 'PGAP6', 'None', 'PTBP2', 'C5orf34-AS1', 'B4GALNT4', 'LINC02958', 'DMD', 'LINC00706', 'EEF1AKMT1', 'None', 'None', 'METRNL', 'MPND', 'NOBOX', 'LINC02706', 'TRIM50', 'IGKV6D-21', 'ZFHX4', 'AHCYL1', ...
obs: FeatureSet(id='KrYPEOnuTBTRi4WqoelO', n=4, registry='core.Feature', hash='Z0BvFRBSIr9xpTLjV1nb', updated_at=2023-10-10 15:42:35, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 donor (12, core.ULabel): '582C', 'A36', 'D503', 'A37', 'A29', '640C', 'D496', 'A52', 'A35', 'A31', ...
🔗 tissue (17, bionty.Tissue): 'jejunal epithelium', 'caecum', 'ileum', 'lamina propria', 'thymus', 'duodenum', 'thoracic lymph node', 'skeletal muscle tissue', 'omentum', 'mesenteric lymph node', ...
🔗 assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
🔗 cell_type (32, bionty.CellType): 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'non-classical monocyte', 'effector memory CD4-positive, alpha-beta T cell', 'megakaryocyte', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'germinal center B cell', 'mast cell', 'alveolar macrophage', 'T follicular helper cell', ...
external: FeatureSet(id='BHYzxR0GLmF7wf6wZ9Od', n=1, registry='core.Feature', hash='6xnLXE9IYVLlzfQ9kHw6', updated_at=2023-10-10 15:42:36, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 species (1, bionty.Species): 'human'
The file is now queryable by everything we linked:
file.describe()
File(id='oYS8NR45oBcEPgCISfCm', suffix='.h5ad', accessor='AnnData', description='Conde22', size=57615999, hash='6Hu1BywwK6bfIU2Dpku2xZ', hash_type='sha1-fl', updated_at=2023-10-10 15:42:35)
Provenance:
🗃️ storage: Storage(id='YpFBBtr4', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-10-10 15:41:26, created_by_id='DzTjkKse')
💫 transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type=notebook, updated_at=2023-10-10 15:41:34, created_by_id='DzTjkKse')
👣 run: Run(id='RNgU2xx7TeUrL3d83b4F', run_at=2023-10-10 15:41:34, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
👤 created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-10 15:41:26)
Features:
var: FeatureSet(id='XGD5bALjzlxe3dYm2tcM', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-10 15:42:29, modality_id='nG6MZ3aj', created_by_id='DzTjkKse')
'TAF11L2', 'PGAP6', 'None', 'PTBP2', 'C5orf34-AS1', 'B4GALNT4', 'LINC02958', 'DMD', 'LINC00706', 'EEF1AKMT1', 'None', 'None', 'METRNL', 'MPND', 'NOBOX', 'LINC02706', 'TRIM50', 'IGKV6D-21', 'ZFHX4', 'AHCYL1', ...
obs: FeatureSet(id='KrYPEOnuTBTRi4WqoelO', n=4, registry='core.Feature', hash='Z0BvFRBSIr9xpTLjV1nb', updated_at=2023-10-10 15:42:35, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 donor (12, core.ULabel): '582C', 'A36', 'D503', 'A37', 'A29', '640C', 'D496', 'A52', 'A35', 'A31', ...
🔗 tissue (17, bionty.Tissue): 'jejunal epithelium', 'caecum', 'ileum', 'lamina propria', 'thymus', 'duodenum', 'thoracic lymph node', 'skeletal muscle tissue', 'omentum', 'mesenteric lymph node', ...
🔗 assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
🔗 cell_type (32, bionty.CellType): 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'non-classical monocyte', 'effector memory CD4-positive, alpha-beta T cell', 'megakaryocyte', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'germinal center B cell', 'mast cell', 'alveolar macrophage', 'T follicular helper cell', ...
external: FeatureSet(id='BHYzxR0GLmF7wf6wZ9Od', n=1, registry='core.Feature', hash='6xnLXE9IYVLlzfQ9kHw6', updated_at=2023-10-10 15:42:36, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 species (1, bionty.Species): 'human'
Labels:
🏷️ species (1, bionty.Species): 'human'
🏷️ tissues (17, bionty.Tissue): 'jejunal epithelium', 'caecum', 'ileum', 'lamina propria', 'thymus', 'duodenum', 'thoracic lymph node', 'skeletal muscle tissue', 'omentum', 'mesenteric lymph node', ...
🏷️ cell_types (32, bionty.CellType): 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'non-classical monocyte', 'effector memory CD4-positive, alpha-beta T cell', 'megakaryocyte', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'germinal center B cell', 'mast cell', 'alveolar macrophage', 'T follicular helper cell', ...
🏷️ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
🏷️ ulabels (12, core.ULabel): '582C', 'A36', 'D503', 'A37', 'A29', '640C', 'D496', 'A52', 'A35', 'A31', ...
Create a dataset from the file#
dataset = ln.Dataset(file, name="My versioned scRNA-seq dataset", version="1")
dataset
Dataset(id='oYS8NR45oBcEPgCISfCm', name='My versioned scRNA-seq dataset', version='1', hash='6Hu1BywwK6bfIU2Dpku2xZ', transform_id='Nv48yAceNSh8z8', run_id='RNgU2xx7TeUrL3d83b4F', file_id='oYS8NR45oBcEPgCISfCm', created_by_id='DzTjkKse')
Let’s inspect the features measured in this dataset which were inherited from the file:
dataset.features
Features:
var: FeatureSet(id='XGD5bALjzlxe3dYm2tcM', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-10 15:42:29, modality_id='nG6MZ3aj', created_by_id='DzTjkKse')
'TAF11L2', 'PGAP6', 'None', 'PTBP2', 'C5orf34-AS1', 'B4GALNT4', 'LINC02958', 'DMD', 'LINC00706', 'EEF1AKMT1', 'None', 'None', 'METRNL', 'MPND', 'NOBOX', 'LINC02706', 'TRIM50', 'IGKV6D-21', 'ZFHX4', 'AHCYL1', ...
obs: FeatureSet(id='KrYPEOnuTBTRi4WqoelO', n=4, registry='core.Feature', hash='Z0BvFRBSIr9xpTLjV1nb', updated_at=2023-10-10 15:42:35, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 donor (0, core.ULabel):
🔗 tissue (0, bionty.Tissue):
🔗 assay (0, bionty.ExperimentalFactor):
🔗 cell_type (0, bionty.CellType):
external: FeatureSet(id='BHYzxR0GLmF7wf6wZ9Od', n=1, registry='core.Feature', hash='6xnLXE9IYVLlzfQ9kHw6', updated_at=2023-10-10 15:42:36, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 species (0, bionty.Species):
This looks all good, hence, let’s save it:
dataset.save()
Annotate by linking labels:
dataset.labels.add(experimental_factors.single_cell_rna_sequencing, features.assay)
dataset.labels.add(species.human, features.species)
dataset.labels.add(adata.obs.cell_type, feature=features.cell_type)
dataset.labels.add(adata.obs.assay, feature=features.assay)
dataset.labels.add(adata.obs.tissue, feature=features.tissue)
dataset.labels.add(adata.obs.donor, feature=features.donor)
For this version 1 of the dataset, dataset and file match each other. But they’re independently tracked and queryable through their registries.
dataset.describe()
Dataset(id='oYS8NR45oBcEPgCISfCm', name='My versioned scRNA-seq dataset', version='1', hash='6Hu1BywwK6bfIU2Dpku2xZ', updated_at=2023-10-10 15:42:41)
Provenance:
💫 transform: Transform(id='Nv48yAceNSh8z8', name='scRNA-seq', short_name='scrna', version='0', type=notebook, updated_at=2023-10-10 15:41:34, created_by_id='DzTjkKse')
👣 run: Run(id='RNgU2xx7TeUrL3d83b4F', run_at=2023-10-10 15:41:34, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
📄 file: File(id='oYS8NR45oBcEPgCISfCm', suffix='.h5ad', accessor='AnnData', description='Conde22', size=57615999, hash='6Hu1BywwK6bfIU2Dpku2xZ', hash_type='sha1-fl', updated_at=2023-10-10 15:42:41, storage_id='YpFBBtr4', transform_id='Nv48yAceNSh8z8', run_id='RNgU2xx7TeUrL3d83b4F', created_by_id='DzTjkKse')
👤 created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-10-10 15:41:26)
Features:
var: FeatureSet(id='XGD5bALjzlxe3dYm2tcM', n=36503, type='number', registry='bionty.Gene', hash='dnRexHCtxtmOU81_EpoJ', updated_at=2023-10-10 15:42:29, modality_id='nG6MZ3aj', created_by_id='DzTjkKse')
'TAF11L2', 'PGAP6', 'None', 'PTBP2', 'C5orf34-AS1', 'B4GALNT4', 'LINC02958', 'DMD', 'LINC00706', 'EEF1AKMT1', 'None', 'None', 'METRNL', 'MPND', 'NOBOX', 'LINC02706', 'TRIM50', 'IGKV6D-21', 'ZFHX4', 'AHCYL1', ...
obs: FeatureSet(id='KrYPEOnuTBTRi4WqoelO', n=4, registry='core.Feature', hash='Z0BvFRBSIr9xpTLjV1nb', updated_at=2023-10-10 15:42:35, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 donor (12, core.ULabel): '582C', 'A36', 'D503', 'A37', 'A29', '640C', 'D496', 'A52', 'A35', 'A31', ...
🔗 tissue (17, bionty.Tissue): 'jejunal epithelium', 'caecum', 'ileum', 'lamina propria', 'thymus', 'duodenum', 'thoracic lymph node', 'skeletal muscle tissue', 'omentum', 'mesenteric lymph node', ...
🔗 assay (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
🔗 cell_type (32, bionty.CellType): 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'non-classical monocyte', 'effector memory CD4-positive, alpha-beta T cell', 'megakaryocyte', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'germinal center B cell', 'mast cell', 'alveolar macrophage', 'T follicular helper cell', ...
external: FeatureSet(id='BHYzxR0GLmF7wf6wZ9Od', n=1, registry='core.Feature', hash='6xnLXE9IYVLlzfQ9kHw6', updated_at=2023-10-10 15:42:36, modality_id='NIjDnou1', created_by_id='DzTjkKse')
🔗 species (1, bionty.Species): 'human'
Labels:
🏷️ species (1, bionty.Species): 'human'
🏷️ tissues (17, bionty.Tissue): 'jejunal epithelium', 'caecum', 'ileum', 'lamina propria', 'thymus', 'duodenum', 'thoracic lymph node', 'skeletal muscle tissue', 'omentum', 'mesenteric lymph node', ...
🏷️ cell_types (32, bionty.CellType): 'naive thymus-derived CD8-positive, alpha-beta T cell', 'dendritic cell, human', 'non-classical monocyte', 'effector memory CD4-positive, alpha-beta T cell', 'megakaryocyte', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'germinal center B cell', 'mast cell', 'alveolar macrophage', 'T follicular helper cell', ...
🏷️ experimental_factors (4, bionty.ExperimentalFactor): 'single-cell RNA sequencing', '10x 3' v3', '10x 5' v2', '10x 5' v1'
🏷️ ulabels (12, core.ULabel): '582C', 'A36', 'D503', 'A37', 'A29', '640C', 'D496', 'A52', 'A35', 'A31', ...
And we can access the file like so:
dataset.file
File(id='oYS8NR45oBcEPgCISfCm', suffix='.h5ad', accessor='AnnData', description='Conde22', size=57615999, hash='6Hu1BywwK6bfIU2Dpku2xZ', hash_type='sha1-fl', updated_at=2023-10-10 15:42:41, storage_id='YpFBBtr4', transform_id='Nv48yAceNSh8z8', run_id='RNgU2xx7TeUrL3d83b4F', created_by_id='DzTjkKse')
dataset.view_flow()