Query & integrate data#
import lamindb as ln
import lnschema_bionty as lb
lb.settings.species = "human"
馃挕 loaded instance: testuser1/test-facs (lamindb 0.55.2)
ln.track()
馃挕 notebook imports: lamindb==0.55.2 lnschema_bionty==0.31.2
馃挕 Transform(id='wukchS8V976Uz8', name='Query & integrate data', short_name='facs3', version='0', type=notebook, updated_at=2023-10-10 15:45:54, created_by_id='DzTjkKse')
馃挕 Run(id='eYGe8Gi3R4jMTpKIjRde', run_at=2023-10-10 15:45:54, transform_id='wukchS8V976Uz8', created_by_id='DzTjkKse')
Inspect the CellMarker registry #
Inspect your aggregated cell marker registry as a DataFrame
:
lb.CellMarker.filter().df().head()
name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | species_id | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
cFJEI6e6wml3 | CD20 | MS4A1 | 931 | A0A024R507 | uHJU | Fbnq | 2023-10-10 15:45:22 | DzTjkKse | |
roEbL8zuLC5k | Cd14 | CD14 | 4695 | O43678 | uHJU | Fbnq | 2023-10-10 15:45:22 | DzTjkKse | |
uThe3c0V3d4i | CD27 | CD27 | 939 | P26842 | uHJU | Fbnq | 2023-10-10 15:45:22 | DzTjkKse | |
0qCmUijBeByY | CD94 | KLRD1 | 3824 | Q13241 | uHJU | Fbnq | 2023-10-10 15:45:22 | DzTjkKse | |
CR7DAHxybgyi | CD38 | CD38 | 952 | B4E006 | uHJU | Fbnq | 2023-10-10 15:45:22 | DzTjkKse |
Search for a marker (synonyms aware):
lb.CellMarker.search("PD-1").head(2)
id | synonyms | __ratio__ | |
---|---|---|---|
name | |||
PD1 | 2VeZenLi2dj5 | PID1|PD-1|PD 1 | 100.000000 |
CD14/19 | 9VptKqpwq9BZ | 54.545455 |
Look up markers with auto-complete:
markers = lb.CellMarker.lookup()
markers.cd8
CellMarker(id='ttBc0Fs01sYk', name='CD8', synonyms='', gene_symbol='CD8A', ncbi_gene_id='925', uniprotkb_id='P01732', updated_at=2023-10-10 15:45:22, species_id='uHJU', bionty_source_id='Fbnq', created_by_id='DzTjkKse')
Query files by markers #
Query panels and datasets based on markers, e.g., which datasets have 'CD8'
in the flow panel:
panels_with_cd8 = ln.FeatureSet.filter(cell_markers=markers.cd8).all()
ln.File.filter(feature_sets__in=panels_with_cd8).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
QerZGf4taLaLa0UCUjEO | QK7Rd19J | None | .h5ad | AnnData | Alpert19 | None | 33369696 | VsTnnzHN63ovNESaJtlRUQ | md5 | OWuTtS4SAponz8 | R7aH6AfJFQF8f46JiC2H | None | 2023-10-10 15:45:30 | DzTjkKse |
9iRLixREI4t3uJwL6urF | QK7Rd19J | None | .h5ad | AnnData | Oetjen18_t1 | None | 46501304 | I8nRS02iBs5z1J01b2qwOg | md5 | SmQmhrhigFPLz8 | q7FG1FkyFAdnRdyp17Hk | None | 2023-10-10 15:45:44 | DzTjkKse |
Access registries:
features = ln.Feature.lookup()
Find shared cell markers between two files:
files = ln.File.filter(feature_sets__in=panels_with_cd8).list()
file1, file2 = files[0], files[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['CD27', 'Cd4', 'CD3', 'CD8', 'CD45RA', 'Ccr7']