facs4/4 Jupyter Notebook lamindata

Analyze the dataset and save a result#

import lamindb as ln
import lnschema_bionty as lb

ln.track()
💡 loaded instance: testuser1/test-facs (lamindb 0.55.2)
💡 notebook imports: lamindb==0.55.2 lnschema_bionty==0.31.2 scanpy==1.9.5
💡 Transform(id='zzJzdgJ763Dyz8', name='Analyze the dataset and save a result', short_name='facs4', version='0', type=notebook, updated_at=2023-10-10 15:46:01, created_by_id='DzTjkKse')
💡 Run(id='GMOu1feAl3sdZqeK8y0g', run_at=2023-10-10 15:46:01, transform_id='zzJzdgJ763Dyz8', created_by_id='DzTjkKse')
ln.Dataset.filter().df()
name description version hash reference reference_type transform_id run_id file_id storage_id initial_version_id updated_at created_by_id
id
QerZGf4taLaLa0UCUjEO My versioned cytometry dataset None 1 VsTnnzHN63ovNESaJtlRUQ None None OWuTtS4SAponz8 R7aH6AfJFQF8f46JiC2H QerZGf4taLaLa0UCUjEO None None 2023-10-10 15:45:30 DzTjkKse
QerZGf4taLaLa0UCUjCk My versioned cytometry dataset None 2 ZKQxIw0uAvtMtdZk8SAj None None SmQmhrhigFPLz8 q7FG1FkyFAdnRdyp17Hk None None QerZGf4taLaLa0UCUjEO 2023-10-10 15:45:46 DzTjkKse
dataset = ln.Dataset.filter(name="My versioned cytometry dataset", version="2").one()
adata = dataset.load(join="inner")
/opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages/anndata/_core/anndata.py:1838: UserWarning: Observation names are not unique. To make them unique, call `.obs_names_make_unique`.
  utils.warn_names_duplicates("obs")

The AnnData has the reference to the individual files in the .obs annotations:

adata.obs.file_id.cat.categories
Index(['9iRLixREI4t3uJwL6urF', 'QerZGf4taLaLa0UCUjEO'], dtype='object')

By default, the intersection of features is used:

adata.var.index
Index(['CD8', 'CD27', 'Ccr7', 'Cd4', 'CD45RA', 'CD3'], dtype='object')

Let us create a plot:

markers = lb.CellMarker.lookup()
import scanpy as sc

sc.pp.pca(adata)
sc.pl.pca(adata, color=markers.cd8.name, save="_cd8")
WARNING: saving figure to file figures/pca_cd8.pdf
https://d33wubrfki0l68.cloudfront.net/845a283e2e48ef295834ac32fc102ab8d2af3634/1f8b7/_images/1a5cd40184f54765d280e465188f785571825f3b3b6ae2676d241aa398b96edf.png
file = ln.File("./figures/pca_cd8.pdf", description="My result on CD8")

file.save()
file.view_flow()
https://d33wubrfki0l68.cloudfront.net/7eadea2a98fd58128e68351268e287eabcfcce4a/eac7c/_images/70e9bd9dea2c30d6c9e317c036422fe4a291f84fb9334e410729e545c1f799c7.svg

Given the image is part of the notebook, there isn’t an actual need to save it and you can also rely on the report that you’ll create when saving the notebook via the command line via:

lamin save <notebook_path>
# clean up test instance
!lamin delete --force test-facs
!rm -r test-flow
💡 deleting instance testuser1/test-facs
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-facs.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-facs
rm: cannot remove 'test-flow': No such file or directory